

GEODESIA GLOBAL DAS NAÇÕES UNIDAS CENTRO DE EXCELÊNCIA

MODERNIZAÇÃO DO SISTEMA DE REFERÊNCIA
GEOESPACIAL
OFICINA DE DESENVOLVIMENTO DE CAPACIDADES

Parâmetros de transformação, modelos de movimento de placas e modelos de deformação

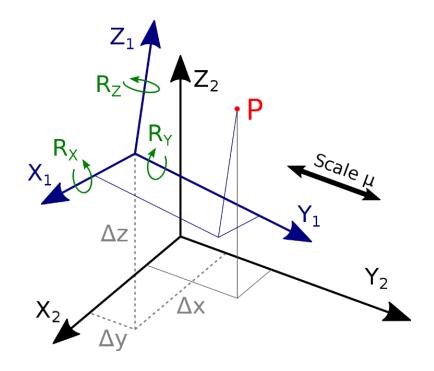
Nicholas Brown Chefe do Gabinete, UN-GGCE

Dia 3, Sessão 1 [3_1_1]

Síntese

- Uma transformação de coordenadas refere-se a uma alteração das coordenadas de um ponto definido num quadro de referência para um sistema de referência diferente (por exemplo, de XYZ em ITRF1996 para XYZ em ITRF2020).
- Uma transformação geodésica comum é conhecida como transformação de 7 parâmetros, que inclui:
 - <u>3 x Vetor de</u> tradução: A mudança da origem do sistema
 - 3 x Ângulos rotativos: O ângulo pelo qual um sistema é girado em relação a outro
 - <u>1 x Dimensionamento</u>: Redimensionamento devido às diferentes escalas ao longo do eixo coordenado
- Para desenvolver uma transformação de 7 parâmetros entre dois sistemas de referência diferentes, é necessário conhecer as coordenadas cartesianas centradas na Terra (ou seja, XYZ) em ambos os sistemas em vários pontos.
- Quando uma transformação de 7 parâmetros é insuficiente para atingir a precisão necessária,
 pode ser necessário um modelo de deformação 1D, 2D ou 3D.

MAIS


Diferentes sistemas de referência

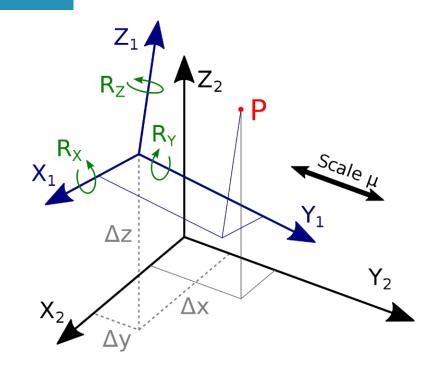
Variedade de sistemas de referência

- Diferentes escalas: global, regional, nacional, local
- Finalidade diferente: técnica, científica, cadastral
- Deterioração ao longo do tempo devido à dinâmica da Terra
- Evolução tecnológica maior precisão

Transformação de coordenadas

- A transformação (mudança) de coordenadas de um ponto definido num sistema de referência para um sistema de referência diferente (por exemplo, de XYZ em ITRF1996 para XYZ em ITRF2020).
- Os parâmetros comuns de transformação geodésica incluem:
 - <u>Vetor de</u> tradução: A mudança da origem do sistema
 - <u>Ângulos</u> de rotação: O ângulo pelo qual um sistema é girado em relação a outro
 - <u>Dimensionamento</u>: Redimensionamento devido às diferentes escalas ao longo do eixo coordenado

Transformação de coordenadas


Equação da transformação de Helmert

$$egin{bmatrix} X \ Y \ Z \end{bmatrix}^B = egin{bmatrix} t_x \ t_y \ t_z \end{bmatrix} + \mu \cdot egin{bmatrix} 1 & r_z & -r_y \ -r_z & 1 & r_x \ r_y & -r_x & 1 \end{bmatrix} \cdot egin{bmatrix} X \ Y \ Z \end{bmatrix}^A \ ext{Tradução (3)} \ ext{Tradução (4)} \ ext{Tradução (5)} \ ext{T$$

Novo Coordenadas Original Coordenadas

7 Parâmetros de transformação

- Tradução (3)
- Rotação (3)
- Escala (1)

Transformação de coordenadas

Repositórios de dados estáticos

Transformação

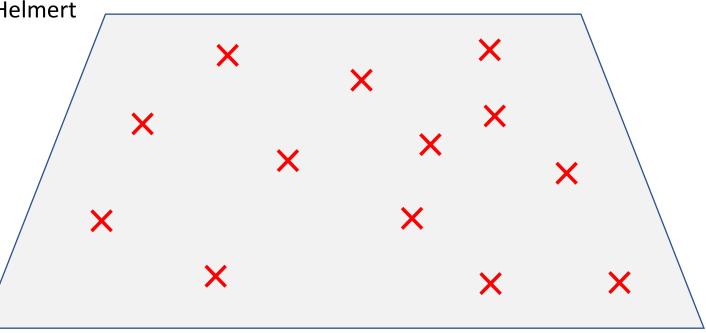
Conexão entre dois repositórios de dados diferentes

*Caso de uso – melhoria na gestão de alturas (o ITRF1992 e o ITRF2020 apresentam uma diferença de 9 cm na altura elipsoidal)

Repositórios de dados estáticos

Transformação de 7

parâmetros


Parâmetros de transformação

- Estimativa dos parâmetros de transformação
- Pontos comuns nos repositórios de dados estáticos ANTIGOS e NOVOS (mínimo de três pontos)

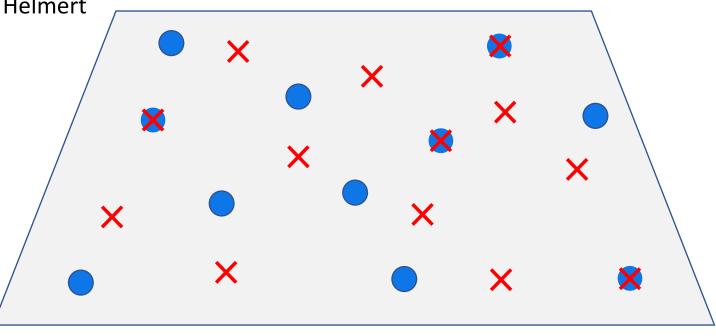
Inversão da equação da transformação de Helmert

Exemplo

 Marcador no antigo repositório de dados estático

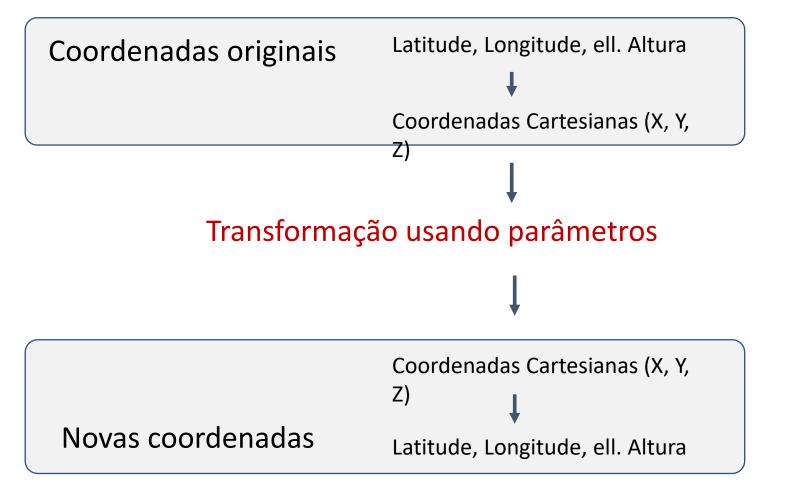
Parâmetros de transformação

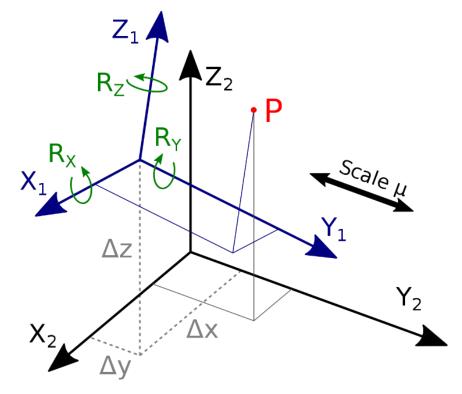
- Estimativa dos parâmetros de transformação
- Pontos comuns nos repositórios de dados estáticos ANTIGOS e NOVOS (mínimo de três pontos)


Inversão da equação da transformação de Helmert

Exemplo

 Marcador no antigo repositório de dados estático




 Marcador no novo repositório de dados estático

Transformação de coordenadas

Transformação de coordenadas (com deformação)

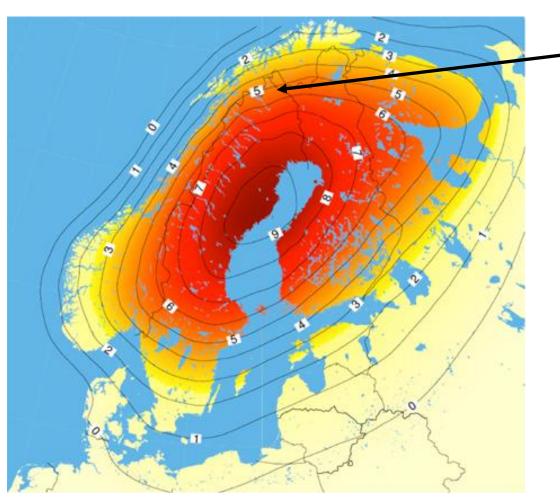
Repositórios de dados estáticos

Novos Repositórios de Dados Estáticos Geocêatricos

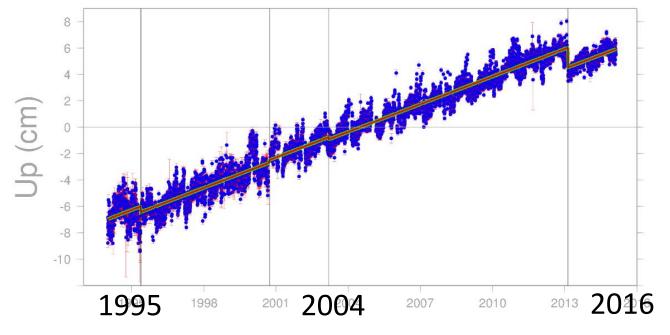
Transformação de 7 parâmetros

+modelo de deformação

Repositórios de dados estáticos

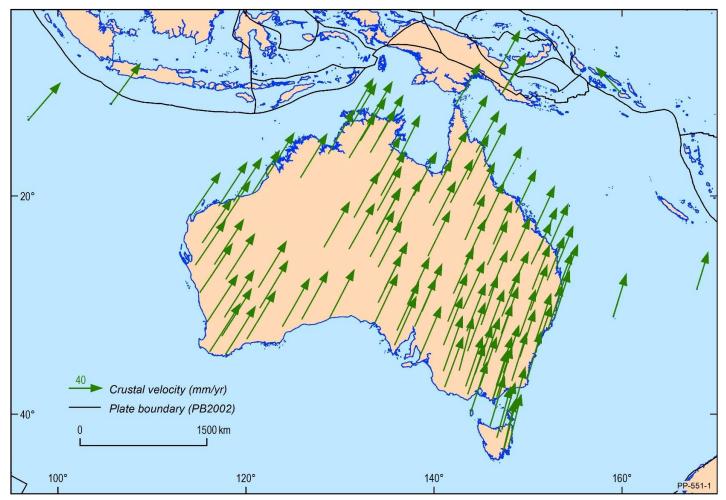

Antigo Repositório de Dados Estático Transformação + Deformação

Conexão entre dois repositórios de dados diferentes


MAIS
FORTES.

Deformação 1D (Elevação Terrestre Pós-glacial)

Estação GNSS Kiruna Elevação do terreno 7 mm/ano

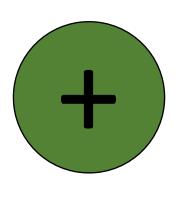


MAIS
FORTES.

Deformação 2D

Movimento secular

- A Austrália é a placa continental que se move mais rapidamente (~7 cm/ano NNE)
- O GNSS fornece coordenadas no ITRF (posição atual da placa australiana).
- Os usuários observariam uma discrepância de aproximadamente 1,8 m entre as posições GNSS e os conjuntos de dados espaciais (se em GDA94).



Deformação 2D (Modelo de movimento de placas)

- O continente australiano está relativamente livre de deformações, com a deformação horizontal acumulada resultante de grandes terremotos sendo inferior a 0,2 mm/ano (Tregoning et al. 2013).
- O movimento do continente pode ser modelado por uma rotação no sentido horário em torno de um polo de Euler. A velocidade instantânea dessa rotação resulta no que parece ser um movimento linear de ~7 cm/ano na direção nortenordeste, com locais mais distantes do polo se movendo mais rapidamente do que aqueles mais próximos.
- O Modelo Australiano de Movimento de Placas (PMM) foi criado através da análise da solução APREF, que mostrou que a estabilidade horizontal das estações APREF é de 1 mm/ano ou menos.
- O PMM australiano pode ser usado para propagar coordenadas entre o ITRF2014 em qualquer época e o GDA2020 (e vice-versa).
- Versão mais densa e precisa do modelo de velocidade ITRF2014 para a Austrália.

GDA2020 = ITRF2014@2020

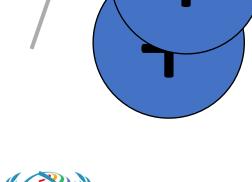
As coordenadas ITRF2014 são diferentes das coordenadas ITRF1992. Por exemplo, as alturas diferem em 9 cm.

Por que elas não combinam?

1. Alterações no sistema de

Atualizações da ITRE: 1994, 1996, 1997, 2000, 2005, 2008, 2014.

Cada um celes é uma versão melhorada da forma da sedia de hoje

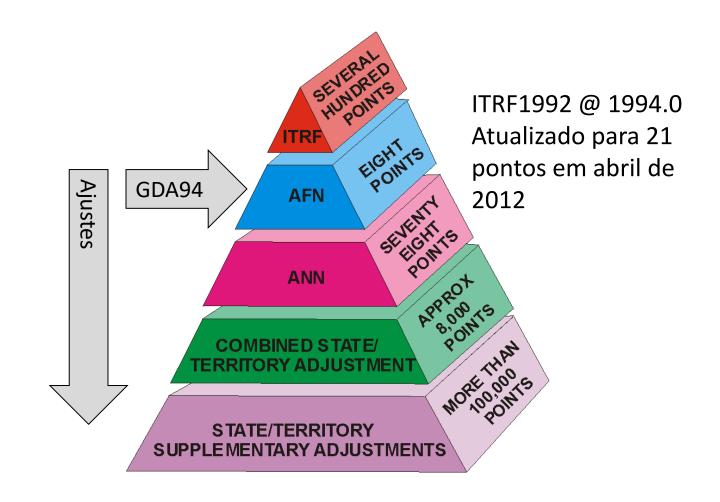

parâmetros

Distorções locais (por exemplo, subsidência, terremotos)

3. Falta de rigor na forma como as coordenadas GDA94 foram calculadas

ITRF1992@1995.0 (~7 cm a nordeste de 1994)

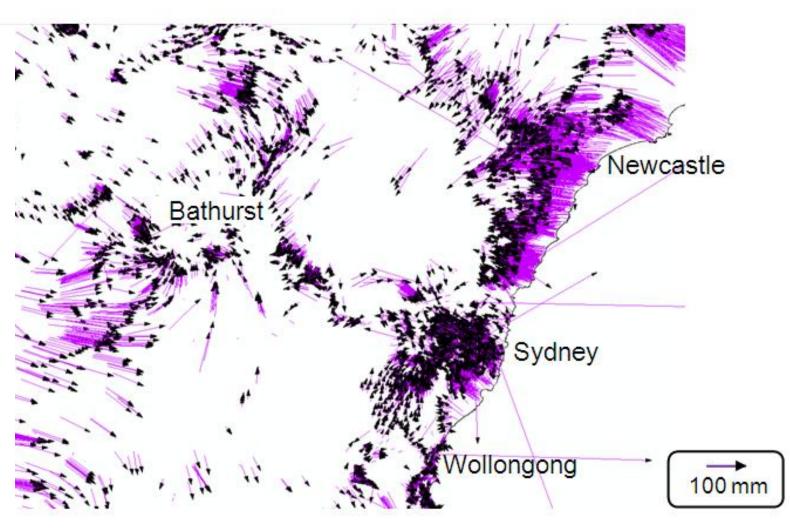
GDA94 = ITRF1992@1994,0


~7 cm/ano

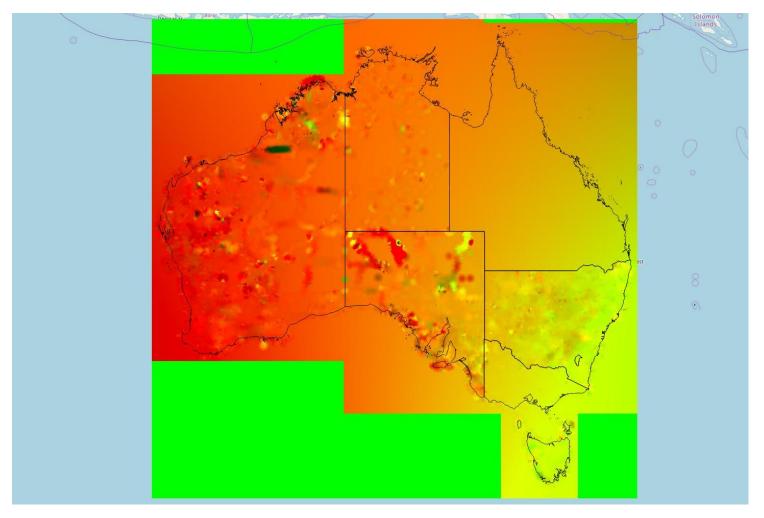
Deformação 2D

Distorção no GDA94

- Alterações no sistema de referência entre o ITRF1992 e os dias de hoje
- 2. Distorções locais (por exemplo, subsidência, terremotos)
- Falta de rigor na forma como as coordenadas GDA94 foram calculadas



Deformação 2D

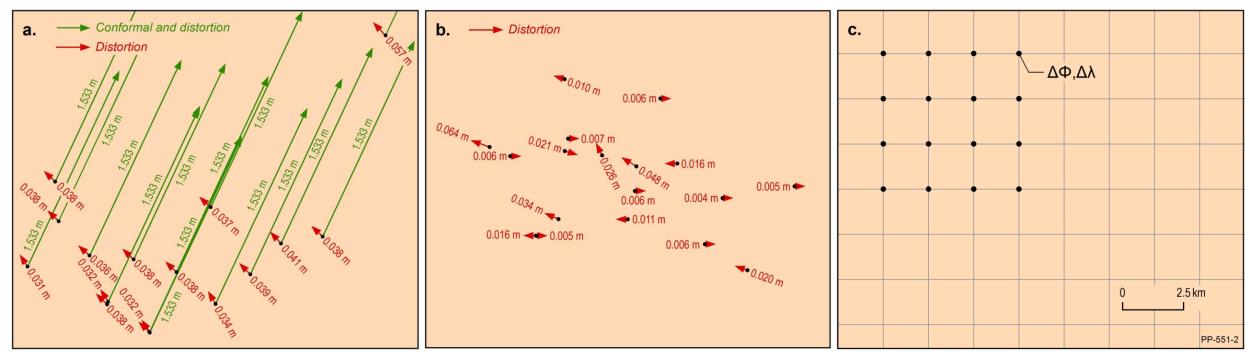

Distorção no Repositório de Dados Geocêntrico da Austrália 1994

- Alterações no sistema de referência entre o ITRF1992 e os dias de hoje
- Distorções locais (por exemplo, subsidência, terremotos)
- Falta de rigor na forma como as coordenadas GDA94 foram calculadas

Fonte: Joel Haasdyk e Tony Watson, LPI NSW, Conferência APAS 2013

Deformação 2D (Conformal + Grelha de deformação)

Cortesia de Alex Woods, DELWP

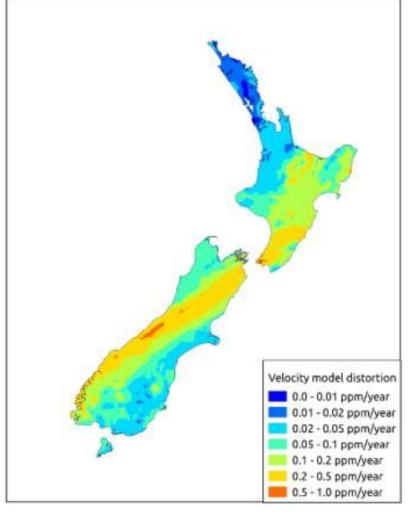

Inserir:

- Grelha conformacional
- Notas da pesquisa
 - Publicado GDA94
 - GDA2020 ajustado

Aplicação:

- 2D
- Dados alinhados com a rede de marcas de controle da pesquisa

Deformação 2D (Conformal + Grelha de deformação)


- a) componentes conformes (verde) e de distorção (vermelho) das grelhas de transformação;
- b) baixa confiabilidade do componente de distorção;
- c) A grelha possui um componente de latitude e um componente de longitude.

Deformação 3D

Os modelos de deformação são usados para estimar:

 A deformação da crosta terrestre, incluindo movimentos tectônicos, falhas geológicas e terremotos.

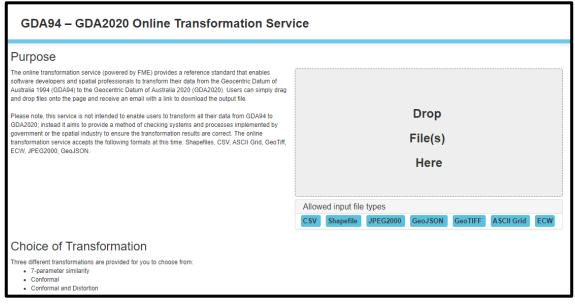
A Nova Zelândia (NZGD2000) é definida através da sua relação com o ITRF através do modelo de deformação.

Deformação 3D

	Patch reverso	Patch para avançar
Descrição	Um patch reverso corrige coordenadas no passado para levar em conta a deformação que ocorreu desde um período de referência específico.	Um patch avançado projeta coordenadas para o futuro ou as corrige para o presente, a fim de refletir a deformação em andamento.
Finalidade	Ajustar coordenadas históricas (por exemplo, dados de levantamentos coletados há anos) para alinhá-las com o moderno sistema de referência NZGD2000, que representa a superfície da Terra em uma época de referência específica (2000.0).	Ajustar coordenadas atuais ou passadas para levar em conta o movimento da crosta terrestre que ocorrerá (ou ocorreu) após o período de referência (2000.0) para alinhá-las com sua posição no mundo real.
Cenário	Suponha que as coordenadas tenham sido medidas em 2012. Para utilizá-los na estrutura NZGD2000 tal como era em 2000, é aplicado um patch reverso para "desfazer" o movimento tectônico que ocorreu entre 2000 e 2012.	Se uma pesquisa for realizada hoje (por exemplo, em 2025), as coordenadas precisariam de um patch avançado para "prever" o movimento desde a época de 2000.0.
Utilização	Normalmente aplicado ao integrar conjuntos de dados mais antigos em uma estrutura geodésica moderna ou ao comparar dados históricos com coordenadas atuais.	Essencial para aplicações como posicionamento GNSS em tempo real, onde as coordenadas precisam refletir a superfície atual da Terra, em vez do sistema de referência 2000.0.

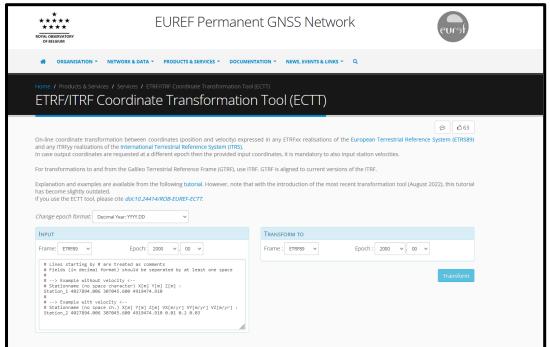
Recursos

https://github.com/GeoscienceAustralia/GeodePy



Australian Geospatial Reference System Compendium

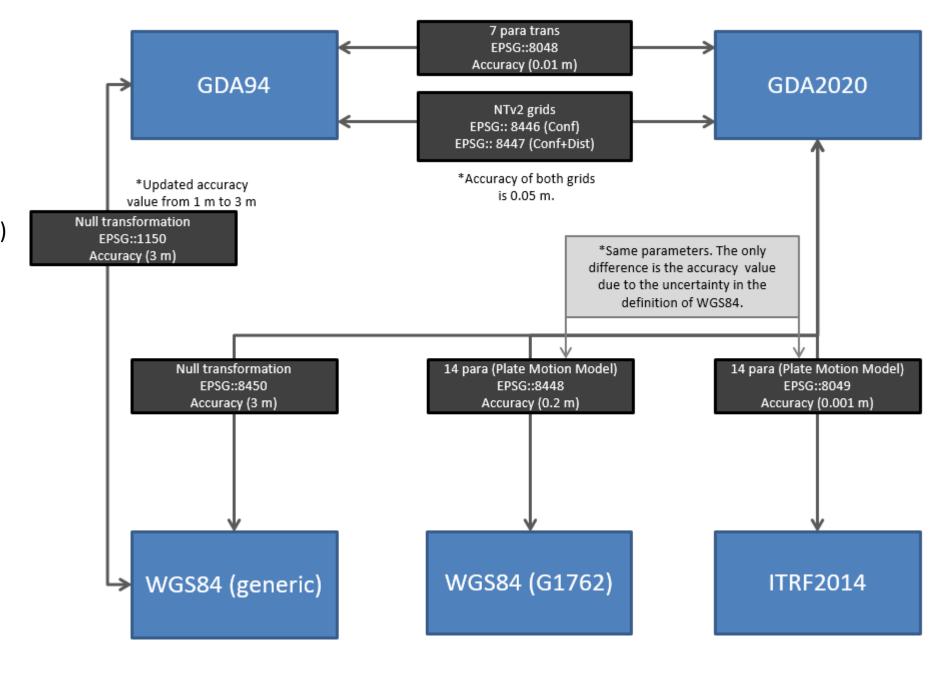
Intergovernmental Committee on Surveying and Mapping
Geodesy Working Group
16 August 2022


https://www.icsm.gov.au/sites/default/files/2022-08/AGRS_Compendium_20220816.pdf

Recursos: Serviços de transformação

http://positioning.fsdf.org.au/

https://github.com/GeoscienceAustralia/GeodePy


https://www.epncb.oma.be/_productsservices/coord_trans/

Estado atual

- Atualizar a precisão do código EPSG GDA94-WGS84 (genérico) (1150) de 1 m para 3 m
- Introdução dos códigos EPSG GDA94-GDA2020
- Introdução dos códigos EPSG GDA2020-ITRF2014(8049)

<u>Futuro</u>

 Discussões com a OGC+EPSG para reconhecer o WGS84 como dependente do tempo

